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We present a theoretical study of the motion of the antihydrogen atom (H̄) in the gravitational field of Earth above
a material surface. We predict that the H̄ atom, falling in the gravitational field of Earth above a material surface,
would settle into long-lived quantum states. We point out a method of measuring the difference in the energy
of H̄ in such states. The method allows for spectroscopy of gravitational levels based on atom-interferometric
principles. We analyze the general feasibility of performing experiments of this kind. We point out that such
experiments provide a method of measuring the gravitational force (Mg) acting on H̄ and that they might be of
interest in the context of testing the weak equivalence principle for antimatter.
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I. INTRODUCTION

Galileo, Newton, and Einstein recognized that all bodies,
regardless of their mass and composition, fall toward the Earth
with an equal gravitational acceleration. Is that conclusion
valid for antimatter? This has never been tested.

In the context of the general relativity theory, the universal-
ity of free fall is often referred to as the weak equivalence
principle (WEP). Violations of the WEP could occur in
ordinary matter-matter interactions—e.g., as a result of the
difference between gravitational coupling to the rest mass
and that to the binding energy. The WEP is being tested
with increasing sensitivity for macroscopic bodies. The best
test so far confirms the WEP to an accuracy of 2 × 10−13

(using a rotating torsion balance [1]). Ongoing projects aim
for an accuracy of 1 part in 1016 (laser tracking of a pair
of test bodies in a freely falling rocket [2]), or even of 1
part in 1018 (in an Earth-orbiting satellite [3]). However, in
view of the difficulties in unifying quantum mechanics with
the theory of gravity, it is of great interest to investigate
the gravitational properties of quantum mechanical objects,
such as elementary particles or atoms. Such experiments have
already been performed—e.g., using interferometric methods
to measure the gravitational acceleration of neutrons [4,5]
and atoms [6–9]. However, the experiments with antiatoms
(see [10,11] and references therein) are even more interesting
in view of testing the WEP, because the theories striving to
unify gravity and quantum mechanics (such as supersymmetric
string theories) tend to suggest violation of the gravitational
equivalence of particles and antiparticles [12]. Experiments
testing gravitational properties of antiatoms are on the agenda
of all experimental groups working with antihydrogen (see,
e.g., ATHENA-ALPHA [13], ATRAP [14], and AEGIS [15]).
One of the challenging aspects of experiments of this kind
is to control the initial parameters of antiatoms, such as their
temperature and position, with sufficient accuracy [16].

In the present paper we investigate the possibility of
exploring gravitational properties of antiatoms in the ultimate
quantum limit. We study antihydrogen atoms levitating in
the lowest gravitational states above a material surface. The
existence of such gravitational states for neutrons was proven
experimentally [17–19]. The existence of analogous states

for antiatoms seems, at a first glance, impossible because of
annihilation of antiatoms in the material walls. However, we
have shown that ultracold antihydrogen atoms are efficiently
reflected from a material surface [20,21] because of so-called
quantum reflection from the Casimir-Polder atom-surface
interaction potential. We have shown that antihydrogen atoms,
confined by quantum reflection via Casimir forces from below
and by gravitational force from above, would form metastable
gravitational quantum states. They would bounce on a surface
for a finite lifetime (of the order of 0.1 s) [20]. This simple
system can be considered a microscopic laboratory for testing
the gravitational interaction under extremely well specified (in
fact, quantized!) conditions.

The annihilation of ultraslow antiatoms in a wall occurs
with a small but finite (a few percent) probability. It provides
a clear and easy-to-detect signal, which might be used to
measure continuously the antiatom density in the gravitational
states as a function of time. If antiatoms are settled in a super-
position of gravitational states, the antiatom density evolves
with beatings, determined by the energy difference between
the gravitational levels. The transition frequencies between the
gravitational levels are related to the strength of the gravita-
tional force Mg acting on antiatoms; here M is the gravitational
mass of H̄, and g is the Earth’s local gravitational field strength.
We also show that a measurement of differences between the
energy levels would allow us to disentangle Mg in a way
independent of the effects of the antiatom-surface interaction.

The plan of the paper is as follows. In Sec. II we study the
main properties of the quasistationary gravitational states, in
Sec. III we present the time evolution of the superposition of
H̄ gravitational states, and in Sec. IV we discuss the concept of
a quantum ballistic experiment, namely, the spatial-temporal
evolution of the superposition of H̄ gravitational states. In
Sec. V we analyze the feasibility of measuring H̄ atom
properties in gravitational quantum states. In the Appendix
we derive useful analytical expressions for the scalar product
of quasistationary gravitational states.

II. GRAVITATIONAL STATES OF H̄

In this section we discuss the properties of the gravitational
states of H̄ above a material surface.
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We consider an H̄ atom bouncing above a material surface
in the gravitational field of Earth. H̄ is confined because of
quantum scattering from the Casimir-Polder potential below
and the gravitational field above. The Schrödinger equation
for the wave function �(z) of H̄ in such a superposition of
atom-surface and gravitational potentials is[

− h̄2∂2

2m∂z2
+ V (z) + Mgz − E

]
�(z) = 0. (1)

Here z is the distance between the surface and the H̄ atom,
and V (z) is the atom-surface interaction potential with a
long-range asymptotic form V (z) ∼ −C4/z

4. We distinguish
between the gravitational mass, which we refer to as M, and the
inertial mass, denoted by m, hereafter. The wave function �(z)
satisfies the full absorption boundary condition at the surface
(z = 0) [21], which stands for the annihilation of antiatoms in
the material wall.

The characteristic length and energy scales are

l0 = 3

√
h̄2

2mMg
, (2)

lCP =
√

2mC4, (3)

ε0 = 3

√
h̄2M2g2

2m
, (4)

εCP = h̄2

4m2C4
. (5)

Here l0 = 5.871 µm is the characteristic gravitational
length scale, lCP = 0.027 µm is the characteristic Casimir-
Polder interaction length scale, ε0 = 2.211 × 10−14 a.u. is the
characteristic gravitational energy scale, and εCP = 1.007 ×
10−9 a.u. is the Casimir-Polder energy scale. As one can
see, the gravitational length scale is much larger than the
Casimir-Polder length scale (l0 � lCP), while the gravitational
energy scale is much smaller than the Casimir-Polder energy
scale (ε0 � εCP). It is also useful to introduce the gravitational
time scale τ0:

τ0 = h̄/ε0 � 0.001 s. (6)

For large atom-surface separation distances z � lCP the
solution of Eq. (1) has the form

�(z) ∼ Ai

(
z

l0
− E

ε0

)
+ K(E) Bi

(
z

l0
− E

ε0

)
, (7)

where Ai(x) and Bi(x) are the Airy functions [22]. The
requirement of square integrability of the wave function
�(z → ∞) → 0 results in the following equation for the
energy levels of the gravitational states in the presence of
the Casimir-Polder interaction:

K(En) = 0. (8)

The hierarchy of the Casimir-Polder and gravitational scales
(lCP � l0) suggests that the quantum reflection from the
Casimir-Polder potential can be accounted for by modifying
the boundary condition for the quantum bouncer (a particle
bouncing in the gravitational field above a surface; the
interaction of the latter with a particle is modeled by an infinite

TABLE I. The eigenvalues, gravitational energies, and classical
turning points of a quantum bouncer with the mass of (anti)hydrogen
in the Earth’s gravitational field.

n λ0
n E0

n (peV) z0
n (µm)

1 2.338 1.407 13.726
2 4.088 2.461 24.001
3 5.521 3.324 32.414
4 6.787 4.086 39.846
5 7.944 4.782 46.639
6 9.023 5.431 52.974
7 10.040 6.044 58.945

reflecting wall). The wave-function of the quantum bouncer
satisfies the following equation system:(

− h̄2∂2

2m∂z2
+ Mgz − En

)
�n(z) = 0,

(9)
�n(z = 0) = 0.

The energy levels of the quantum bouncer are known to be [17]

E0
n = ε0λ

0
n, (10)

Ai
( − λ0

n

) = 0. (11)

Table I summarizes the eigenvalues and classical turning
points z0

n = E0
n/(Mg) for the first seven gravitational states of

a quantum bouncer (with the mass of antihydrogen).
For the distances lCP � z � l0 one could neglect the

gravitational potential in Eq. (1). In this approximation, the
solution of Eq. (1) has the following asymptotic form:

�(z) ∼ sin[kz + δ(E)]. (12)

Here k is the wave vector k = √
2mE, and δ(E) is the

phase shift of H̄ reflected from the Casimir-Polder potential
in the absence of the gravitational field [21]. Matching the
asymptotics in Eq. (12) and Eq. (7), we get the relation between
the phase shift δ(E) and the K function introduced in Eq. (7):

K(E) = − tan[δ(E)] Ai′(−E/ε0) − kl0 Ai(−E/ε0)

tan[δ(E)] Bi′(−E/ε0) − kl0 Bi(−E/ε0)
. (13)

In deriving the above expression we took into account that
the relation between K(E) and δ(E) should not depend on
the matching point zm and thus can be formally attributed to
zm = 0. Substitution of Eq. (13) into Eq. (8) gives an equation
for the distorted gravitational levels:

tan[δ(En)]

kl0
= Ai(−En/ε0)

Ai′(−En/ε0)
. (14)

This equation is equivalent to the following boundary condi-
tion:

�(0)

�′(0)
= tan[δ(En)]

k
. (15)

Thus an H̄ atom, confined by the gravitational field of Earth
and the quantum reflection from the Casimir-Polder potential,

032903-2



GRAVITATIONAL QUANTUM STATES OF ANTIHYDROGEN PHYSICAL REVIEW A 83, 032903 (2011)

can be described by the following equation system:(
− h̄2∂2

2m∂z2
+ Mgz − En

)
�n(z) = 0,

(16)
�(0)

�′(0)
= tan[δ(En)]

k
.

For the lowest gravitational states the condition klCP � 1 is
valid. Thus the scattering-length approximation for the phase
shift δ(E) ≈ −kaCP is well justified. The complex-valued
quantity [21]

aCP = −(0.10 + i1.05)lCP, (17)

aCP = −0.0027 − i0.0287 µm (18)

is the scattering length for the Casimir-Polder potential
provided full absorbtion in the material wall. Thus the
equation for the lowest eigenvalues (14) takes a form

aCP

l0
= − Ai(−En/ε0)

Ai′(−En/ε0)
. (19)

The above equation is equivalent to the following boundary
condition for the wave function �(z) of a particle in the
gravitational potential Eq. (1):

�(z → 0) → z − aCP. (20)

Because of the imaginary part of the scattering length aCP,
the gravitational states of H̄ above a material surface are
quasistationary decaying states. For low quantum numbers
n, it is easy to relate the lowest quasistationary energy
levels En to the unperturbed gravitational energy levels E0

n

of a quantum bouncer. Indeed, the variable substitution z =
z̃ + aCP transforms Eqs. (9) and (20) into the equation system
for the quantum bouncer:[

− h̄2∂2

2m∂z̃2
+ Mg̃z − (En − MgaCP)

]
�n(̃z) = 0, (21)

�n(̃z → 0) → 0. (22)

The eigenvalues En and eigenfunctions �n are

En = E0
n + MgaCP, (23)

�n(z) = 1

Ni

Ai
(
(z − aCP)/l0 − λ0

n

)
, (24)

where Ni is the normalization coefficient [see Eqs. (A9) and
(A10) in the Appendix]. In the following, we will use the
dimensionless eigenvalues λn = En/ε0:

λn = λ0
n + aCP/l0. (25)

An important message from the above expression is that
the complex shift MgaCP (due to the account of quantum
reflection on the Casimir-Polder potential) is the same for
all low-lying quasistationary gravitational levels. This means
that the transition frequencies between the gravitational states
are not affected by the Casimir-Polder interaction, provided
the latter can be described by the complex scattering length
aCP. The scattering-length approximation is valid in the limit
knaCP → 0, where kn = √

2mEn (let us note that for the first
gravitational state |k1aCP| = 0.0071). However, accounting for
the higher order k-dependent terms in Eq. (14) would result
in a state-dependent shift of the gravitational states due to
the Casimir-Polder interaction. We use a known low-energy
expansion of the s-wave phase shift δ(E) in a homogeneous
1/z4 potential [23], in which we keep the two leading
k-dependent terms:

aCP(k) cot[δ(k)] � −1 + π

3

lCP

aCP
(lCPk)

+ 4

3
(lCPk)2 ln

(
lCPk

4

)
+ . . . . (26)

We introduce a k-dependent modified “scattering length”
ãCP(k) ≡ −δ(k)/k and get the following expression
for ãCP(k):

ãCP(k) � aCP + π

3
lCP(lCPk) + 4

3
aCP(lCPk)2 ln

(
lCPk

4

)
. (27)

The leading k-dependent term in the above expression,
π
3 lCP(lCPk), is real and independent of properties of the inner
part of the Casimir-Polder interaction. It is determined by
the asymptotic form of the potential, and thus it depends on
the Casimir-Polder length scale lCP only. Thus the modified
equation for the gravitational-state energies is

En = E0
n + MgãCP(En). (28)

Taking into account the smallness of the k-dependent terms
(for the lowest gravitational states) in expression (27), we get

En � E0
n + MgãCP

(
k0
n

) = ε

[
λ0

n + aCP/l0 + πlCP

3l0

(
lCPk

0
n

) + 4aCP

3l0

(
lCPk

0
n

)2
ln

(
lCPk

0
n

4

)]
. (29)

Here k0
n = √

2mE0
n.

Accounting for k-dependent terms in Eq. (27) modifies the
transition frequencies between the gravitational states in a way
that is dependent on the Casimir-Polder interaction. However,
such modification is very weak. Indeed, taking into account
that lCPk

0
n ∼ lCP/l0 for the lowest gravitational states, the lead-

ing k-dependent corrections to the gravitational energy are of
the second order in the small parameter lCP/l0. The transition
frequency between the first and second gravitational states

equals ω12 = ω0
12 + 
12, where ω0

12 = (E0
2 − E0

1)/(2πh̄) =
254.54 Hz, and 
12 = Mg[ãCP(k0

2) − ãCP(k0
1)] = 0.0017 Hz.

An account of the first two terms in Eq. (27) provides
an equal decay width for the lowest gravitational states.
This width is determined by the probability of antihydrogen
penetrating to the surface and annihilating:

�n = ε
b

2l0
. (30)
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Here we use a standard notation b = 4 Im aCP . According to
our previous calculations [20]

b = 0.115 µm. (31)

The widths of the gravitational states (30) are proportional to
the ratio ε/l0. Using Eqs. (2) and (4) we find that this ratio is
equal to the gravitational force ε/l0 = Mg so that

�n = b

2
Mg. (32)

The corresponding lifetime (calculated for an ideal con-
ducting surface) is

τ = 2h̄

Mgb
� 0.1 s. (33)

We note factorization of the gravitational effect (appearing
in this formula via the factor Mg) and the quantum reflection
effect, manifesting through the constant b. Such a factorization
is a consequence of the smallness of the ratio of the character-
istic scales b/(2l0) � 0.01.

Comparing the life time of H̄ in one of the lowest gravita-

tional states to the classical period T = 2
√

2l0λ1
g

� 0.0033 s of

H̄ bouncing with the energy of the ground state, we see that H̄
bounces an average of about 30 times before annihilating. This
shows that the lowest gravitational states are well-resolved
quasistationary states.

It is interesting to estimate the upper limit of the quantum
number N , below which the gravitational states is still
resolved; i.e,

τN

TN

= 2πh̄

�(N ) dE(n)
dn

> 1. (34)

Here τN is the lifetime of the Nth gravitational state, and TN

is a classical period corresponding to the Nth state via TN =
2h̄π/(dE(n)/dn)|n=N . For such an estimation we transform
Eq. (14) using the asymptotic form of the Airy function for a
large negative argument and get

λn =
{

3

2

[
π

(
n − 1

4

)
− δ(En)

]}2/3

. (35)

The accuracy of this equation increases with increasing n; it
gives the energy value within a few percent even for n = 1. In
the energy domain of interest |δ(E)| � π (n − 1

4 ) [21], so

λn � λ0
n − δ

(
E0

n

)√
λ0

n

. (36)

Here we use the semiclassical approximation for λ0
n [24]:

λ0
n �

[
3

2
π

(
n − 1

4

)]2/3

. (37)

One can verify that in the case of small n Eq. (37) reduces to
Eq. (25). The substitution of Eq. (36) into Eq. (34) results in

τn

Tn

� 1

4 Im δ
(
E0

n

) . (38)

The ratio τ (n)/T (n) expresses the number of classical bounces
of H̄ during the lifetime of its nth state. This dependence

FIG. 1. The number of H̄ bounces during the lifetime of the nth
gravitational state.

is shown in Fig. 1. Using numerical values δ(E), calculated
in [21], we find that inequality (34) holds for

n < N = 30 000. (39)

The corresponding energy EN = 6 × 10−11 a.u., and the
characteristic size of such states is as large as HN = 1.6 cm.
This means that the concept of the quasibound gravitational
states is justified not only for the lowest states; it also might
be applied for highly excited states.

The quasistationary character of the gravitational states of
the antiatom above a material surface manifests itself in a
nonzero current through the bottom surface (z = 0). Indeed,
the expression for the current is

j (z,t) = ih̄

2M

[
�(z,t)

d�∗(z,t)

dz
− �∗(z,t)

d�(z,t)

dz

]
, (40)

which taken at z = 0 for a given gravitational state (24) turns
out to be equal to

j (0,t) = ε exp

(
− �

h̄
t

)
× Ai∗(−λn) Ai′(−λn) − Ai(−λn) Ai′∗(−λn)

NiN
∗
i

. (41)

Here λn is given by Eq. (25), and Ni is the normalization
factor. We take into account the smallness of the ratio aCP/l0
and Eq. (11), and get

Ai(−λn) ≈ −aCP

l0
Ai′

( − λ0
n

)
, (42)

which is exact up to the second order in the ratio aCP/l0.
Now taking into account an explicit form of the normalization
coefficients [Eq. (A10) in the Appendix] Ni = Ai′(−λ0

n), we
get finally

j (0,t) = −ε
b

2h̄l0
exp

(
−�

h̄
t

)
= −�

h̄
exp

(
−�

h̄
t

)
. (43)

This result is in full agreement with Eq. (30) as far as

d

dt

∫ ∞

0
|�(z,t)|2dz = j (0,t) = −�

h̄
exp

(
−�

h̄
t

)
. (44)
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III. BOUNCING ANTIHYDROGEN

In this section, we are interested in the evolution of an
initially prepared arbitrary superposition of several lowest
gravitational states of H̄. In the following, we will limit
our treatment to the scattering-length approximation in the
description of the Casimir-Polder interaction, and we will
neglect all but the first term of expression (27), so that
ãCP(k) ≈ aCP. The corresponding H̄ wave function is

�(z,t) =
n∑

i=1

Ci

Ni

Ai(z/l0 − λi) exp

(
−iλi

t

τ0

)
. (45)

Here τ0 is the characteristic time scale of the H̄ bouncer, Ci are
expansion coefficients, and Ni = Ai′(−λi) are the normaliza-
tion factors of the gravitational states (see the Appendix).

We are interested in the evolution of the number of
antihydrogen atoms as a function of time:

F (t) =
∫ ∞

0
|�(z,t)|2dz =

n∑
i,j=1

∫ ∞

0

C∗
j Ci

N∗
j Ni

Ai∗(z/l0 − λj )

× Ai(z/l0 − λi) exp[−iε(λi − λ∗
j )t] dz. (46)

First, let us note that this expression for the total number
of particles is no longer constant, because of the decay of the
quasistationary gravitational states. Second, the quasistation-
ary gravitational states corresponding to different energies are
nonorthogonal:

1

NiNj

∫ ∞

0
Ai∗(z/l0 − λj ) Ai(z/l0 − λi) dz ≡ αij �= δij .

(47)

In the Appendix we will derive the following expression for
the cross terms αij , exact up to the second order of the small
ratio aCP/l0:

αi �=j = i
b/(2l0)

λ0
j − λ0

i + ib/(2l0)
. (48)

As one can see, such cross terms vanish if there is no decay,
i.e., if b = 4 Im aCP → 0.

Now we can calculate an expression for the number of
antihydrogen atoms as a function of time (46):

F (t) = exp

(
−�

h̄
t

)[
n∑
i

|Ci |2 + 2 Re
n∑

i>j

n∑
j

C∗
j Ci

× ib/(2l0)

λ0
j − λ0

i + ib/(2l0)
exp

(
−i

(
λ0

i − λ0
j

) t

τ0

) ]
. (49)

From Eqs. (49) and (30) we get the following expression
for the disappearance (annihilation) rate − dF (t)

dt
, keeping the

terms up to the second order in the ratio aCP/l0:

dF (t)

dt
= −�

h̄
exp

(
−�

h̄
t

)[
n∑
i

|Ci |2 + 2 Re
n∑

i>j

n∑
j

C∗
j Ci

× exp

(
−i

(
λ0

i − λ0
j

) t

τ0

) ]
. (50)

FIG. 2. Evolution of the annihilation rate of H̄ atoms in a
superposition of the first and second gravitational states.

For a superposition of the two gravitational states with
the equal coefficients C1, C2 (say, C1 = C2 = 1), the above
expression attains a simple form:

dF12(t)

dt
= −�

h̄
exp

(
−�

h̄
t

)
[1 + cos(ω12t)]. (51)

Here ω12 = (λ0
2 − λ0

1)/τ0. The same result could be obtained
by calculating the flux j (0,t) Eq. (40) for a superposition of
states (45).

One can see that the disappearance rate decays as a function
of time according to the exponential law with the width � (the
same for the lowest states); also, it oscillates with the transition
frequency between the first and second gravitational states
(equal to 254.54 Hz). We plot in Fig. 2 the time evolution of
the disappearance rate for H̄ in a superposition of two lowest
states. Curiously, the oscillation of the disappearance rate is the
direct consequence of the decaying character of gravitational
states. Indeed, such an oscillation is observable because of
the nonvanishing contribution of the interference term in the
expression for the total probability of finding antihydrogen
atoms, given by Eq. (49). As one can see from Eq. (48),
this contribution is proportional to the imaginary part of the
scattering length; it would vanish in the case where there was
no decay of gravitational states because of annihilation in the
material wall (entering through the parameter b/l0).

We observe that the oscillation frequency of the disappear-
ance rate F (t) corresponds to the energy difference between
the unperturbed gravitational levels. Expression (50) does not
include the shift of gravitational-state energies Re aCP/l0 since
it is equal for all gravitational states, thus it is cancelled
out in the energy difference. Accounting for higher order
k-dependent terms in (27) would result in a small [second order
of the ratio (aCP/l0)] correction to the transition frequency. A
measurement of the oscillation frequency ω12 given by Eq. (51)
would allow us to extract the following combination of the
gravitational and inertial masses from Eq. (4):

M2

m
= 2h̄ω3

12

g2
(
λ0

2 − λ0
1

)3 . (52)
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Under the additional assumption of the equality of the
known inertial mass of the hydrogen atom mH and that of
antihydrogen, imposed by CPT, we get

M =
√√√√ 2mHh̄ω3

12

g2
(
λ0

2 − λ0
1

)3 . (53)

The evolution of the superposition of three gravitational
states provides information not only about the characteristic
energy scale ε0 but also about the level spacing as a function of
quantum number n, characterized by the value d2E(n)/dn2.
Such a study might be interesting for testing additional (to
Newtonian gravitation) interactions (see [25,26] and refer-
ences there in) between H̄ and a material surface within the
spatial scale on the order of micrometers. Such interactions
would manifest as nonlinear additions to the gravitational
potential, which would modify the spectrum character. In the
case of the superposition of three states, the disappearance rate
(50) has the form

dF123(t)

dt
= −2

3

�

h̄
exp

(
−�

h̄
t

)(
3

2
+ cos(ω12t) + cos(ω23t)

+ cos[(ω12 + ω23)t]

)
. (54)

Here ωij = (λ0
j − λ0

i )/τ0. One can verify that the period of
coherence of cos(ω12t) and cos(ω23t) terms is

Tr = 2π

ω12 − ω23
� 0.02 s. (55)

A semiclassical expression for Tr is

Tr ≈ 2π

|d2E/dn2| . (56)

One can see that the period Tr is a quantum limit analog of
a half revival period Trev = 4π/|d2E/dn2| (Trev characterizes
the time period after which the evolution of the wave packet
returns to semiclassical behavior; see [27] and references
therein for details). In Fig. 3 we plot the annihilation events
as a function of time (54) for a superposition of the three
lowest gravitational states. The period Tr is clearly seen
as a period of modulation of a rapidly oscillating function.
The ratio

Tr/τ0 = 2π

λ3 − 2λ2 + λ1
(57)

is sensitive to any nonlinear addition to the gravitational
potential. Indeed, while linear corrections to the gravitational

FIG. 3. Evolution of the annihilation rate of H̄ atoms in a
superposition of the first, second, and third gravitational states.

potential can only change ε0, nonlinear additions change the
derivative of levels density |d2E/dn2|.

IV. QUANTUM BALLISTIC EXPERIMENT

Two independent experiments are needed in order to
determine the gravitational mass M and the inertial mass
m of antihydrogen. In the previous section, we showed
that a combination of gravitational and inertial masses M

and m, given by Eq. (52), can be extracted from the fre-
quency measurements, Eqs. (51) and/or (54). Independent
information could be obtained from measurement of the
spatial density distribution of H̄ in a superposition of the
gravitation states, for instance, in the flow-through experiment
(a kind of a beam-scattering experiment), in which H̄ atoms
with a wide horizontal velocity distribution move along the
mirror surface. The time of flight along the mirror should be
measured simultaneously with the spatial density distribution
in a position-sensitive detector, placed at the mirror exit. Such
a detector would be able to measure the density distribution
along the vertical axis at a given time instant. The horizontal
component of the H̄ motion could be treated classically.
Because of a broad distribution of the horizontal velocities
in the beam, atoms would be detected within a wide range
of time intervals between their entrance into the mirror and
their detection at the exit. In such an approach, we could
study the time evolution of H̄ probability density at a given
position z:

|�(12)(z,t)|2 = exp

(
−�

h̄
t

)[∣∣�av
(12)(z)

∣∣2 + 2 Re
Ai(z/l0 − λ1) Ai(z/l0 − λ2)

Ai′(−λ1) Ai′(−λ2)
exp(−iω12t)

]
, (58)

∣∣�av
(12)(z)

∣∣2 =
∣∣∣∣Ai(z/l0 − λ1)

Ai′(−λ1)

∣∣∣∣2

+
∣∣∣∣Ai(z/l0 − λ2)

Ai′(−λ2)

∣∣∣∣2

. (59)
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FIG. 4. (Color) The probability density of H̄ in a superposition of
the first and second gravitational states, as a function of the height z

above the mirror (vertical axis) and the time t (horizontal axis). Dark
shade, low probability density; light shade, high probability density.
The dashed line indicates the position of the node in the wave function
of the second state.

The transition ω12 = 254.54 Hz could be extracted from
the time evolution of the probability density at a given z. The
length scale l0 could be extracted from the position of the zero
z

(2)
1 of the wave function. Here the superscript stands for the

state number and the subscript corresponds to the node number
for a given state. Thus such a position is determined by the
condition Ai(z(2)

1 /l0 − λ2) = 0; it is equal to the following
expression:

z
(2)
1 = (λ2 − λ1)l0 = 10.27 µm. (60)

The probability density in Eq. (58) of a two-state superposition
at z = z

(2)
1 behaves like the probability density of the ground

state alone:

∣∣�12
(
z

(2)
1 ,t

)∣∣2 = exp

(
−�

h̄
t

) ∣∣∣∣∣Ai
(
z

(2)
1 /l0 − λ1

)
Ai′(−λ1)

∣∣∣∣∣
2

. (61)

The probability density at a height z
(2)
1 does not exhibit any

time-dependent oscillations. We show the probability density
as a function of the height z above a mirror (the y axis) and
the time t (the x axis) in a superposition of the first and second
gravitational states in Fig. 4.

The position of the node in the wave function of the second
state is shown in Fig. 4 as a horizontal line, separating the
lower and upper rows of periodic maxima and minima in the
probability density plot. The position z

(2)
1 does not depend on

the initial populations of the gravitational states, which makes
it beneficial for extracting the spatial scale l0.

The knowledge of the length l0 and the energy ε0 scales
allows extraction of the inertial m and gravitational M masses
of H̄ from the following expressions:

m = h̄2

2ε0l
2
0

, (62)

M = ε0

gl0
. (63)

The equality m = M postulated by the Weak Equivalence
Principle (WEP) relates ε0 and l0 as follows:

ε0 = h̄

√
g

2l0
, (64)

whereas the gravitational time scale Eq.(6) can be written as:

τ0 =
√

2l0

g
. (65)

One can easily recognize in this expression a classical time of
fall from the height l0 in the Earth’s gravitational field.

Thus a measurement of the temporal-spatial probability
density dependence of H̄ in a superposition of the two lowest
gravitational states would provide full information on the
gravitational properties of antimatter. The superposition of
three (and more) gravitational states could be useful to search
for additional (to gravity) interactions with a spatial scale on
the order of l0. For such a purpose, it is useful to study the
probability density at the zero position of each Airy function
in the superposition of the states. In particular, the nodes of
the second and third gravitational states are the following:

z
(2)
1 = (λ2 − λ1)l0 = 10.27 µm, (66)

z
(3)
1 = (λ3 − λ2)l0 = 8.41 µm, (67)

z
(3)
2 = z

(2)
1 + z

(3)
1 = 18.68 µm. (68)

The probability density of the three-state superposition (ijk)
evaluated at the position z

(k)
i is equal to the probability density

for the two-state superposition (jk):∣∣�(ijk)
(
z(k)
n ,t

)∣∣2 = ∣∣�(ij )
(
z(k)
n ,t

)∣∣2
. (69)

This means that the three-state probability density exhibits
harmonic time-dependent oscillation with a frequency ωij

at the height of the node z(k)
n . Let us mention that the time

dependence of |�ijk(z,t)|2 at any height z, except for the
mentioned zeros, is not harmonic; it is given by a superposition
of three cosine functions with different frequencies, analogous
to Eq. (54). This property allows us to extract the zero positions
using the probability density. One can see that knowledge of
the single-state nodes [Eqs. (67) and (68)] is analogous to
knowledge of the transition frequencies. The measurement
of one zero position allows us to extract the spatial scale l0;
the measurement of two or more zero positions allows us to
constrain hypothetical nonlinear additions to the gravitational
potential. We show the probability density as a function of
height z above the mirror (the y axis) and the time t (the x axis)
for a superposition of the first, second, and third gravitational
state in Fig. 5.
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V. FEASIBILITY OF EXPERIMENTS ON GRAVITATIONAL
STATES OF ANTIHYDROGEN

In this section we study the feasibility of an experiment
on the gravitationally bound quantum states of antihydrogen
atoms. For that purpose, we compare such experiment with
the already performed experiments on the gravitational states
of ultra-cold neutrons (UCNs) [17–19]. The UCN gravita-
tional experiments can be used as a benchmark for such a
comparison because (1) the neutron mass is nearly equal
to the antihydrogen mass, (2) the modifications of the H̄
quantum state energies and wave-functions following from
the precise shape of the Casimir-Polder potential are small
compared to the solutions for the quantum bouncer (UCNs in
the Earth’s gravitational field above a perfect mirror are well
described by the quantum bouncer model), (3) our estimations
indicate that the lifetimes of H̄ in the quantum states (0.1 s)
are comparable to or even longer than the time of UCN
passage through the mirror-absorber installation, and (4) UCN
velocities are comparable to velocities of ultracold H̄ atoms
produced in traps [13,14]. We will discuss here mainly the
statistical limitations arising from an estimate of the spectra
from sources of H̄ atoms that are projected in the near future.

In the simplest configuration, the experimental method for
observation of the gravitational states of neutrons consisted
of measuring the flux of UCNs passing through a slit between
the horizontal mirror and the flat absorber (scatterer) placed
above it at a variable height as a function of the slit height
(the integral measuring method), or analyzing the spatial
UCN density distribution behind the exit of the horizontal
bottom mirror (the differential measuring method) using
position-sensitive neutron detectors. The slit height can

FIG. 5. (Color) The probability density of H̄ in a superposition
of the first, second, and third gravitational states, as a function
of the height z above the mirror (vertical axis) and the time t

(horizontal axis). Dark shade, low probability density; light shade,
high probability density. The dashed lines indicate the positions of
the nodes in the wave functions of the second and third states.

be changed and precisely measured. The absorber acts
selectively on the gravitational states; namely, the states with
a spatial size Hn = λ0

nl0 smaller than the absorber height
H are weakly affected, while the states with Hn > H are
intensively absorbed [24,28,29]. A detailed description of the
experimental method, the experimental setup, the results and
their relevance can be found, for instance, in Refs. [17–19,30].

Leaving aside numerous methodological difficulties in
the experiments of this kind (since they have been already
overcome in the neutron experiments) and a real challenge
to get high phase-space densities of trapped antihydrogen
atoms (they are aimed at anyway in the existing antihydrogen
projects [10,11]), let us compare relevant phase-space
densities in the two problems, keeping in mind that this
is the principle parameter, which defines the population of
quantum states in accordance with the Liouville theorem. If
the phase-space densities of antihydrogen atoms were equal
to those of UCNs, we could simply propose using an existing
UCN gravitational spectrometer [31,32] for antihydrogen
experiments with minor modifications.

UCNs constitute only an extremely narrow initial fraction of
a much broader, hotter neutron velocity distribution. Maximum
UCN fluxes available today for experiments in a flow-through
mode are equal to 4 × 103 UCNs per cm2/s; such UCNs
populate uniformly the phase space up to the so-called critical
velocity of about 6 m/s (UCNs with smaller velocity are totally
reflected from the surface under any incidence angle; thus they
could be stored in closed traps and transported using UCN
guides). If one used pulsed mode with a duty cycle of, say,
10−3, the average flux would drop to 4 UCNs per cm2/s.
The pulse method provides more precise measurements, it is
used in current experiments with the GRANIT spectrometer,
and it will be used in gravitational interference measurements
analogous to those performed with the centrifugal quantum
states of neutrons [33,34]. Taking into account the phase-space
volume available for UCNs in the gravitationally bound
quantum states in the GRANIT spectrometer [32], we estimate
a total count rate of about 102 events/day while the relative
accuracy for the gravitational mass is 10−3 (we note that the
accuracy in the mentioned experiment is defined by the width
of a quantum transition, and a few events might be sufficient
to observe the corresponding resonance).

The average flux of H̄ atoms projected by the AEGIS
collaboration [15,35] is a few atoms per second; let us take
it equal to 3 H̄ per second to have it defined. The cloud length
is ∼8 mm, its radius is ∼1.5 mm, and thus the cloud volume
is ∼5 × 10−2 cm3. For comparison, estimates of the average
UCN flux, which would be emitted from a small UCN source
with a volume of ∼5 × 10−2 cm3, the maximum available
UCN density of 30 UCNs per cm3, and a duty cycle of ∼10−3

gives 0.15 UCNs per second. This is 20 times lower than
the H̄ flux estimated above. One should not forget, however,
that the projected H̄ temperature is ∼100 mK, i.e., 100 times
larger than the effective UCN temperature. Thus we lose a
factor of

√
100 = 10 because of the larger spread of H̄ vertical

velocities. No geometrical factors are taken into account
here, and no constraints following from final solid angles
allowed, final sizes of H̄ detectors, mirrors, etc. However,
accounting for these would decrease our estimation by only a
few times provided proper experiment design (note that equal
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acceleration of all antihydrogen atoms would not decrease
their phase-space density). Thus we could provide statistical
power of an H̄ experiment comparable to a UCN experiment.

Since the projected temperature of antihydrogen atoms in
another proposal [36] is significantly lower (∼1 mK, that is,
just equal to the effective UCN temperature), the phase-space
density of antihydrogen atoms could be even higher. Another
significant advantage of a lower temperature consists of a more
compact setup design. Note that a gravitational spectrometer
analogous to that used in Refs. [31,32] selects just a very small
fraction of UCNs (H̄) available (those with extremely small
vertical velocity components); thus the count rate of “useful”
events is extremely low in both cases.

Thus, we conclude that measurements of the gravitationally
bound quantum states of antihydrogen atoms would be realistic
if they profited from methodological developments available
in neutron experiments and high phase-space densities of
antihydrogen atoms targeted by the future experiments. Based
on extensive analysis of the mentioned neutron experiments,
we can conclude that measurement of the gravitational mass
of antihydrogen atoms with an accuracy of at least 10−3

is realistic, provided that the projected high H̄ phase-space
density is achieved.

VI. CONCLUSIONS

We argue for the existence of long-lived quasistationary
states of H̄ above a material surface in the gravitational field
of Earth. A typical lifetime of such states above an ideally
conducting plane surface is τ � 0.1 s. The quasistationary
character of such states is due to the quantum reflection
of ultracold (anti)atoms from the Casimir-Polder (anti)atom-
surface potential. The relatively long lifetime is due to the
smallness of the ratio of the characteristic spatial antiatom-
surface interaction scale lCP and the spatial gravitational scale
l0. We show that the spectrum of decaying gravitational levels
of H̄ is quasidiscrete even for the highly excited states as long
as their quantum number n � 30 000.

We argue that low-lying gravitational states provide an
interesting tool for studying the gravitational properties of
antimatter—in particular, for testing the equivalence between
the gravitational and inertial masses of H̄. We show that by
counting the number of H̄ annihilation events on the surface,
both the transition frequencies between gravitational energy
levels and the spatial density distribution of superpositions of
gravitational states can be measured. An important observation
in this context is that a modification of the above-mentioned
properties of gravitational states due to the interaction with a
surface disappears in the first order of the small ratio lCP/l0.

Finally, we show that actual measurements of quantum
properties of H̄ atoms levitating above a material mirror in
gravitational states are feasible, provided that the projected
high phase-space density of H̄ is achieved.
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APPENDIX

Here we derive an expression for the scalar product of the
eigenfunctions of two complex-energy gravitational states:

αij = 1

NiNj

∫ ∞

0
Ai∗(z/l0 − λj ) Ai(z/l0 − λi) dz, (A1)

with

N2
i =

∫ ∞

0
Ai2(z/l0 − λi) dz. (A2)

We start with the equations for the eigenfunction Ai(z/l0 − λi)
and the complex eigenvalues λi = λ0

i + aCP/l0:

− Ai′′(z/l0 − λi) + z Ai(z/l0 − λi) = λi Ai(z/l0 − λi). (A3)

The equations for the complex conjugated eigenfunction and
the eigenvalue are

− Ai∗
′′
(z/l0 − λj ) + z Ai∗(z/l0 − λj ) = λ∗

j Ai∗(z/l0 − λj ).

(A4)

We multiply both sides of equation Eq. (A3) by Ai∗(z/l0 − λj )
and integrate them over z. Then we multiply both sides of
Eq. (A4) by Ai(z/l0 − λi) and integrate them over z. After
subtraction of the results of these operations we get

Ai∗
′
(−λj ) Ai(−λi) − Ai∗(−λj ) Ai′(−λi)

= (λ∗
j − λi)

∫ ∞

0
Ai∗(z/l0 − λj ) Ai(z/l0 − λi) dz. (A5)

To get the above result, we integrated by parts the integrals
with second derivatives and took into account that Airy
functions vanish at infinity. Now we take into account the
equality Ai(−λ0

i ) = 0 and smallness of the ratio aCP/l0 to
get the following expressions, exact up to the second order
in aCP/l0:

Ai(−λi) = −aCP

l0
Ai′

(− λ0
i

)
, (A6)

Ai∗(−λj ) = −a∗
CP

l0
Ai∗

′ (− λ0
j

)
. (A7)

Up to the second order in aCP/l0 we get

Ai∗
′
(−λj ) Ai(−λi) − Ai∗(−λj ) Ai′(−λi)

= i
b

2l0
Ai∗

′ ( − λ0
j

)
Ai′

(− λ0
i

)
. (A8)

This result should be combined with the known expression for
the normalization coefficient:

N2
i = Ai′2(−λi) + λi Ai2(−λi), (A9)

which, up to the second order in aCP/l0, turns to be

Ni = Ai′
( − λ0

i

) (
1 + λ0

i

a2
CP

2l2
0

)
. (A10)

Keeping first-order terms, we finally get

αi �=j = i
b/(2l0)

λ0
j − λ0

i + ib/(2l0)
. (A11)
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[16] J. Walz and T. Hänsch, Gen. Relativ. Gravit. 36, 561

(2004).
[17] V. V. Nesvizhevsky et al., Nature (London) 415, 297 (2002).
[18] V. V. Nesvizhevsky et al., Phys. Rev. D 67, 102002 (2003).
[19] V. V. Nesvizhevsky et al., Eur. Phys. J. C 40, 479 (2005).
[20] A. Yu. Voronin and P. Froelich, J. Phys. B: At. Mol. Opt. Phys.

38, L301 (2005).

[21] A. Yu. Voronin, P. Froelich, and B. Zygelman, Phys. Rev. A 72,
062903 (2005).

[22] M. Abramowitz and I. A. Stegun, Handbook of Mathemati-
cal Functions, 10th edition (Dover Publications, New York,
1972).

[23] P. A. Macri and R. O. Barrachina, Phys. Rev. A 65, 062718
(2002).

[24] A. Yu. Voronin, H. Abele, S. Baessler, V. V. Nesvizhevsky,
A. K. Petukhov, K. V. Protasov, and A. Westphal, Phys. Rev. D
73, 044029 (2006).

[25] S. Baessler, V. V. Nesvizhevsky, K. V. Protasov, and A. A. Yu.
Voronin, Phys. Rev. D 75, 075006 (2007).

[26] V. V. Nesvizhevsky, G. Pignol, and K. V. Protasov, Phys. Rev.
D 77, 034020 (2008).

[27] R. W. Robinett, Phys. Rep. 392, 1 (2004).
[28] R. Adhikari, Y. Cheng, A. E. Meyerovich, and V. V.

Nesvizhevsky, Phys. Rev. A 75, 063613 (2007).
[29] A. Westphal et al., Eur. Phys. J. C 51, 367 (2007).
[30] V. V. Nesvizhevsky, Sov. Phys. Usp. 53, 645 (2010).
[31] V. V. Nesvizhevsky et al., Nucl. Instrum. Methods Phys. Res. A

440, 754 (2000).
[32] M. Kreuz et al., Nucl. Instrum. Methods Phys. Res. A 611, 326

(2009).
[33] V. V. Nesvizhevsky, A. Yu. Voronin, R. Cubitt, and K. V.

Protasov, Nature Phys. 6, 114 (2010).
[34] R. Cubitt, V. V. Nesvizhevsky, K. V. Protasov, and A. Yu.

Voronin, New J. Phys. 12, 113050 (2010).
[35] AEGIS collaboration, Nucl. Phys. A. 834, 751c (2010).
[36] P. Perez, L. Liszkay, B. Mansoulie, J. M. Rey, A. Mohri,

Y. Yamazaki, N. Kuroda, and H. A. Torii [http://doc.cern.ch/
archive/electronic/cern/preprints/spsc/public/spsc-2007-038.pdf].

032903-10

http://dx.doi.org/10.1103/PhysRevLett.100.041101
http://dx.doi.org/10.1088/0264-9381/27/9/095005
http://dx.doi.org/10.1088/0264-9381/27/9/095005
http://dx.doi.org/10.1016/j.asr.2009.02.012
http://dx.doi.org/10.1016/j.asr.2009.02.012
http://dx.doi.org/10.1103/PhysRevLett.34.1472
http://dx.doi.org/10.1103/PhysRevLett.34.1472
http://dx.doi.org/10.1038/nature00773
http://dx.doi.org/10.1038/nature00773
http://dx.doi.org/10.1007/BF00325375
http://dx.doi.org/10.1038/23655
http://dx.doi.org/10.1038/23655
http://dx.doi.org/10.1103/PhysRevLett.93.240404
http://dx.doi.org/10.1103/PhysRevLett.93.240404
http://dx.doi.org/10.1209/epl/i2005-10163-6
http://dx.doi.org/10.1103/PhysRevLett.100.113001
http://dx.doi.org/10.1038/nature09610
http://dx.doi.org/10.1016/0370-2693(79)90463-5
http://dx.doi.org/10.1063/1.1928839
http://dx.doi.org/10.1016/j.nimb.2007.12.010
http://dx.doi.org/10.1016/j.nimb.2007.12.010
http://dx.doi.org/10.1023/B:GERG.0000010730.93408.87
http://dx.doi.org/10.1023/B:GERG.0000010730.93408.87
http://dx.doi.org/10.1038/415297a
http://dx.doi.org/10.1103/PhysRevD.67.102002
http://dx.doi.org/10.1140/epjc/s2005-02135-y
http://dx.doi.org/10.1088/0953-4075/38/18/L02
http://dx.doi.org/10.1088/0953-4075/38/18/L02
http://dx.doi.org/10.1103/PhysRevA.72.062903
http://dx.doi.org/10.1103/PhysRevA.72.062903
http://dx.doi.org/10.1103/PhysRevA.65.062718
http://dx.doi.org/10.1103/PhysRevA.65.062718
http://dx.doi.org/10.1103/PhysRevD.73.044029
http://dx.doi.org/10.1103/PhysRevD.73.044029
http://dx.doi.org/10.1103/PhysRevD.75.075006
http://dx.doi.org/10.1103/PhysRevD.77.034020
http://dx.doi.org/10.1103/PhysRevD.77.034020
http://dx.doi.org/10.1016/j.physrep.2003.11.002
http://dx.doi.org/10.1103/PhysRevA.75.063613
http://dx.doi.org/10.1140/epjc/s10052-007-0283-x
http://dx.doi.org/10.3367/UFNe.0180.201007a.0673
http://dx.doi.org/10.1016/S0168-9002(99)01077-3
http://dx.doi.org/10.1016/S0168-9002(99)01077-3
http://dx.doi.org/10.1016/j.nima.2009.07.059
http://dx.doi.org/10.1016/j.nima.2009.07.059
http://dx.doi.org/10.1038/nphys1478
http://dx.doi.org/10.1088/1367-2630/12/11/113050
http://doc.cern.ch/archive/electronic/cern/preprints/spsc/public/spsc-2007-038.pdf
http://doc.cern.ch/archive/electronic/cern/preprints/spsc/public/spsc-2007-038.pdf

