

## Sample Environment in ISIS Spallation Neutron Source

Oleg Kirichek & Sample Environment Group

ISIS Facility, STFC, Rutherford Appleton Laboratory, Harwell, Didcot, UK





## NMI3 JRA6 Sample Environment High Pressure Task

#### **Inert Gas Cells**



#### **Current situation:**

- 6 kbar automated gas handling system for inert gases
- 13.8 kbar 'oil' intensifier for hydraulic testing
- gas cells up to 5.5 kbar

#### **Objectives:**

- 15 kbar 'oil' intensifier for hydraulic testing
- 2. 10 kbar automated gas handling system for inert gases
- 3. Design and produce cells and test seal systems up to 8 kbar (LT-300 K)
- 4. Design and prototype *10 kbar* cells for 300 K

#### **Hydrogen Cells**

#### **Current situation:**

- 3 kbar H<sub>2</sub> intensifier and gas handling system
- Inconel cell 2 kbar and up to 700 K,
- Inconel cell 3 kbar at 300K

#### **Objectives:**

- Materials H<sub>2</sub> compatibility/neutron transmission properties
- Sourcing and assembly of 8 kbar H<sub>2</sub> intensifier and gas handling system
- Produce and test cell for 4 kbar and up to 700 K
- Produce and test cell for 6 kbar at 300 K
- Design and prototype 8 kbar cells for LT 300 K





## Cryo-free cryostat 1.5 – 600K based on Pulse Tube Refrigerator







1st Stage: Pulse Tube Refrigerator (completed):

Base temperature: 2.41 K; Cooldown time: 54min; Level of vibrations was considerably less than that produced by GM coolers.

**2<sup>nd</sup> Stage: Conventional Top Loader** (completed):

Base temperature on the sample holder 3.7 K

3<sup>rd</sup> Stage: 1.5K Top Loader:

First prototype achieved *2.3K*. After the test the design has been modified. The test of the prototype 2 is planned for the summer of 2008





## Comparison between GM & PT CCR Toploaders

(GM: Sumitomo 1.5W@4.2K)

Meas. Sci. Technol. 19 (2008) 034018

| Property                       | PT                   | GM                    |
|--------------------------------|----------------------|-----------------------|
| Base sample temperature        | 3.6 K                | 4.4 K                 |
| Time to cooldown to base       | <3 hrs               | ≈4 hrs                |
| Cooldown after sample change   | <1.25 hrs            | <1.25 hrs             |
| Initial cost of CCR system     | \$38,000             | £19,000               |
| Maintenance costs - coldhead   |                      | £5,000<br>@ 9,000 hrs |
| Maintenance costs - compressor | £2,500<br>@20,000hrs | £2,500<br>@20,000hrs  |

## Vibration measurements







## ISIS Advanced Magnets Project

The *ISIS Advanced Magnets Project* started with a submission to the facilities development fund of the CCLRC. In July 2005 a positive response was received and funding was confirmed in June 2006. The project was split into two parts to spread the costs:

#### **Part-I four magnets**:

Wide Angle Chopper Instrument Magnet for Spectrometry

14T Superconducting Magnet for Diffraction

3D Magnet for the reflectometers and lowQ Instruments

Pulsed Magnet Development

**Part-II** will further expand facilities at ISIS and will be submitted after making some progress on Part-1.





## 9T Wide Angle Chopper Magnet



9T Wide Angle Chopper Magnet with wide detector coverage  $\pm 15^{\circ}$  in the vertical plane and  $\pm 40^{\circ}$  in horizontal plane.

Our aim is to achieve the widest aperture possible with the highest achievable field.

Contract has been given to *Oxford Instruments*.

We expect to have the magnet available for use in 2009.









## 14T Superconducting Magnet



The state of the art for a split pair magnet is 15T, but by reducing the maximum field to 14T it is possible to increase the *detector viewing angle from*  $\pm 3^{\circ}$  to  $+10^{\circ}$  and  $-5^{\circ}$ . The addition of dysprosium booster would enable fields up to  $\sim 16T$ .

Contract has been given to *Oxford Instruments*.

This magnet expected to be delivered early in 2009.









## 3D magnet



3D magnet will allow the application of a magnetic field in any direction.

The maximum magnetic field is expected to be 2T in all directions.

Contract has been given to *Scientific Magnetics*.

We hope to run this magnet before December 2008.







## Pulse Tube Refrigerator re-condensing technology

Review of Scientific Instruments 76, 2005, p. 055104



- 1. Pulse Tube Refrigerator (PTR)
- 2. Superconducting magnet
- 3. Second stage of PTR ( $\sim 4K$ )
- 4. First stage of PTR ( $\sim 40$ K)
- 5. Condenser
- 6. Infrared radiation shield (~ 50K)
- 7. Flexible thermal links (copper braids)







## Pulsed Magnetic Fields

(Joint project: Oxford University and ISIS Facility)

Within 3 years Oxford University will develop and build a prototype *Pulsed Magnet* running at >20T and 2Hz with 2ms pulse width.

#### Science Case:

- magnetic field induced structural transformations
- excitations in high temperature/high magnetic field superconductors
- dynamical and structural properties of complex organic and biological systems e.g. alignment of polymers and self-assembly of biological macromolecules.

#### ISIS Instrument:

**TS2** instrument: **eXess** the extreme sample environment instrument (the instrument may require some changes to make it operational with pulsed magnetic fields).





## Powerful Cryo-free Dilution Refrigerator for Low Temperature Sample Environment

VeryCold Oxford Instruments Cryo-free Dilution Refrigerator Kelvinox VT
A sample-in-vacuum Dilution Refrigerator



Cooling power  $\geq 400 \mu W$ !

Base temperature  $\leq 20 \text{ mK}$ 

Sample space: Vertical Cylinder Ø 250 mm; height ~ 250 mm

Fully automated operation!



Cooling power 30 µW

Base temperature  $\approx 25 \text{ mK}$ 

Sample space: Vertical Cylinder Ø 38mm; height 80mm

Expected delivery - June 2008

ISIS Sample environment group has: 4 off Kelvinoxes VT + 1 off TBT DR





# Stress rig for neutron scattering measurements of bulk stress in engineering components at cryogenic temperatures

Meas. Sci. Technol. 19 (2008) 034019



#### The achieved technical specification:

- sample cooling to 30K;
- applied loads up to 50kN;
- access for incident and diffracted neutron beams at 45° to the tensile loading axis.

