ISIS Electronic Developments 2007-8

The work shown in this presentation represents the efforts of all of our team.

Dennis Cowdery (presenting the talk)

Jon Bones

Ben Eltham

Richard Blight

Steve Cox

Advancing science at ISIS with better tools.

Motion Control Thermometry

Experiment Control Instrumentation

Galil based system made in a modular style.

Enormous benefits for wiring installers.

Enormous benefits for computer group.

Easy to commission.

Versatile in application – most motor types can be used.

Only 300mm wide – easy access.

Beam lines using this system (TS1) – CRISP, SURF, MERLIN, INES, ROTAX, LOQ

Total installed axes = 200+

Beam lines being constructed (TS2)-Nimrod, Offspec, Sans2D, Wish, Let, Inter and Polref.

Total axes involved = 260+

Mix of stepper, dc servo, ac servo, piezo

Failures that have occurred been SMPS.

In total we have lost 3 PSU's in about 25 machine years use.

Additionally we have lost one through stupidity.

The mains waveform shown is one of the better ones.

Things can be helped by:Improved Supply
UPS isolation

5 axis Goniometer for Ancient Charm

Movements: X: 140 mm

Y: 120 mm Z: 250 mm

rotation: 200 degrees

Hardware datum at centres of the X, Y, Z stages.

End-limit hardware switch for ω -rotation stage.

Encoders at the back of each motor.

Variable software limits.

LabView interfaces for PC control of xyz and ω stages have been produced.

Integration into ISIS acquisition system.

Always an ongoing issue with scientists.

Need to equip TS2 and update TS1.

New and improved model Eurotherm 3504 – has a 5 digit display –

Measures the temperature of the sensor more accurately – a pity about the sample temperature!

Features –

Three galvanically isolated channels.

2 μν resolution. This equates to a theoretical resolution of 4mK at 4degK and 20mK at room temperature.

200 watts/channel heater power.

1ma and 250 µa sensor excitation.

Dual serial communication links.

Novel low power control to ease use with cryostats

Unusual application of a PT100 platinum sensor in para-hydrogen gauge.

Run the PT100 with constant power control – 200~300mw.

Read back excitation voltage to give gas temperature – related to gas thermal conductivity.

Beth Evans has a detailed poster on this system – see her for details

Experiment control

New requirement to accommodate NIM inputs from the Data Acquisition Cards.

These signals will form a trigger to SE equipment of many varieties, each with its particular quirks.

An opportunity to design an electronic telephone exchange between different hardware types.

Types chosen-

NIM TTL RS232 Fibre Relay

Sane internal programming language - 'C'

Experiment control

Urgent prototype needed to read 4 NIM inputs from our new period card for DAQ and create ASCII strings and analog values.

Software is being written to allow configuration from a host script file.

Additionally a 4-20ma driver facility is fitted.

Vibration of pulse tube cryopumps is a subject of great interest a ISIS.

This is a very difficult measurement to make.

Fundamental frequency is about 1Hz.

Displacements of 5 microns.

Hostile environment.

What can we use??

Laser triangulation measurement -Works down to 0hz from 1kHz.

Non contact - No wires - Line of sight needed

Low frequency vibration analysis

The unit is base dBv = 20*log(Vi			1V pk (2v p	k-pk 0.707v i	ms) = 0dBv
microns pk-pk	volts pk-pk	V pk	dBv	Vrms	
2000	20	10	20	7.071	Based on LK-G402 la
1900	19	9.5	19.55447	6.71745	
1800	18	9	19.08485	6.3639	1mm= 10 vdc
1700	17	8.5	18.58838	6.01035	1um = 10mv dc
1600	16	8	18.0618	5.6568	
1500	15	7.5	17.50123	5.30325	
1400	14	7	16.90196	4.9497	
1300	13	6.5	16.25827	4.59615	
1200	12	6	15.56303		
1100	11	5.5	14.80725	3.88905	
1000	10	5	13.9794	3.5355	
900	8	4.5	13.06425	2.8284	
700	7	3.5	12.0412	2.47485	
600	6	3.5	9.542425	2.1213	
500	5	2.5	7.9588	1.76775	
	4	2.5	6.0206	1.4142	
300	3	1.5	3.521825	1.06065	
200	2	1	0.521625	0.7071	
100	1	0.5	-6.0206	0.35355	
90	0.9	0.45	-6.93575	0.318195	
80	0.8	0.4	-7.9588	0.28284	
70	0.7	0.35	-9.11864	0.247485	
60	0.6	0.3	-10.4576	0.21213	
50	0.5	0.25	-12.0412	0.176775	
40	0.4	0.2	-13.9794	0.14142	
30	0.3	0.15	-16.4782	0.106065	
20	0.3	0.13	-20	0.07071	
10	0.1	0.05	-26.0206	0.035355	
9	0.09	0.045	-26.9357	0.033333	
8	0.09	0.045	-27.9588		
7		0.04		0.026264	
	0.07				
6	0.06	0.03		0.021213	
5	0.05	0.025	-32.0412		
4	0.04	0.02	-33.9794		
3	0.03	0.015		0.010607	
2	0.02	0.01		0.007071	
1	0.01	0.005		0.003536	
0.9	0.009	0.0045	-46.9357		
0.8	0.008	0.004	-47.9588	0.002828	

Modern borescopes fit where thermocouples will go.

1.9mm dia by 900 mm long, stainless steel sheath, vacuum proof, glass fibre.

TV camera mount, illumination capability

Examination of a 5.5Kbar ZrTi cell with a bore of 7mm and depth of 70mm.
Study of damage caused by use and manufacturing marks.

ISIS Electronic Developments 2007-8

The End

Dennis Cowdery
Jon Bones
Ben Eltham
Richard Blight
Steve Cox

